mlr (2.11)

1 user

Machine Learning in R.

Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.

Maintainer: Bernd Bischl
Author(s): Bernd Bischl [aut, cre], Michel Lang [aut], Lars Kotthoff [aut], Julia Schiffner [aut], Jakob Richter [aut], Zachary Jones [aut], Giuseppe Casalicchio [aut], Mason Gallo [aut], Jakob Bossek [ctb], Erich Studerus [ctb], Leonard Judt [ctb], Tobias Kuehn [ctb], Pascal Kerschke [ctb], Florian Fendt [ctb], Philipp Probst [ctb], Xudong Sun [ctb], Janek Thomas [ctb], Bruno Vieira [ctb], Laura Beggel [ctb], Quay Au [ctb], Martin Binder [ctb], Florian Pfisterer [ctb], Stefan Coors [ctb]

License: BSD_2_clause + file LICENSE

Uses: backports, BBmisc, checkmate, data.table, ggplot2, parallelMap, ParamHelpers, stringi, survival, Hmisc, ROCR, XML, ada, adabag, caret, clValid, clue, clusterSim, cluster, e1071, earth, elasticnet, fields, fpc, gbm, ipred, kernlab, kknn, klaR, kohonen, mboost, mda, mlbench, modeltools, numDeriv, pamr, party, penalized, pls, randomForest, rjson, robustbase, rpart, stepPlr, tgp, RWeka, CoxBoost, RCurl, glmnet, mco, neuralnet, FSelector, rsm, sda, sparseLDA, nodeHarvest, MASS, class, nnet, testthat, DiceKriging, DiceOptim, FNN, LiblineaR, cmaes, emoa, lqa, pROC, care, RSNNS, GenSA, bst, Cubist, crs, rrlda, evtree, RRF, rFerns, knitr, irace, rknn, elmNN, GPfit, mRMRe, C50, DiscriMiner, frbs, randomForestSRC, flare, extraTrees, shiny, brnn, sparsediscrim,, laGP, bartMachine, deepnet, h2o, ggvis, PMCMR, xgboost, rmarkdown, mldr, rotationForest, smoof, SwarmSVM, ranger, svglite, Rfast, batchtools, mlrMBO
Reverse depends: flacco, llama, mlrMBO, OOBCurve, OpenML, RBPcurve, unbalanced
Reverse suggests: flacco
Reverse enhances: liquidSVM

Released about 1 month ago.

9 previous versions



  4.0/5 (1 vote)


  4.0/5 (1 vote)

Log in to vote.


No one has written a review of mlr yet. Want to be the first? Write one now.

Related packages: BayesTree, ElemStatLearn, GAMBoost, LogicReg, ROCR, RXshrink, arules, caret, e1071, earth, elasticnet, gbm, glmpath, grplasso, ipred, kernlab, klaR, lars, lasso2, maptree(20 best matches, based on common tags.)

Search for mlr on google, google scholar, r-help, r-devel.

Visit mlr on R Graphical Manual.