CBPS (0.10)

Covariate Balancing Propensity Score.

http://cran.r-project.org/web/packages/CBPS

Implements the covariate balancing propensity score (CBPS) proposed by Imai and Ratkovic (2014; JRSSB). The propensity score is estimated such that it maximizes the resulting covariate balance as well as the prediction of treatment assignment. The method, therefore, avoids an iteration between model fitting and balance checking. The package also implements several extensions of the CBPS beyond the cross-sectional, binary treatment setting. The current version implements the CBPS for longitudinal settings so that it can be used in conjunction with marginal structural models (Imai and Ratkovic, 2014), treatments with three- and four-valued treatment variables, continuous-valued treatments (Fong, Hazlett, and Imai, 2015), and the situation with multiple distinct binary treatments administered simultaneously. In the future it will be extended to other settings including the generalization of experimental and instrumental variable estimates.

Maintainer: Christian Fong
Author(s): Christian Fong <christianfong@stanford.edu>, Marc Ratkovic <ratkovic@princeton.edu>, Chad Hazlett <chazlett@ucla.edu>, Kosuke Imai <kimai@princeton.edu>

License: GPL (>= 2)

Uses: MASS, MatchIt, nnet, numDeriv
Reverse suggests: cobalt, WeightIt
Reverse enhances: optmatch

Released over 4 years ago.