ClustMMDD (1.0.4)

0 users

Variable Selection in Clustering by Mixture Models for Discrete Data.

An implementation of a variable selection procedure in clustering by mixture models for discrete data (clustMMDD). Genotype data are examples of such data with two unordered observations (alleles) at each locus for diploid individual. The two-fold problem of variable selection and clustering is seen as a model selection problem where competing models are characterized by the number of clusters K, and the subset S of clustering variables. Competing models are compared by penalized maximum likelihood criteria. We considered asymptotic criteria such as Akaike and Bayesian Information criteria, and a family of penalized criteria with penalty function to be data driven calibrated.

Maintainer: Wilson Toussile
Author(s): Wilson Toussile

License: GPL (>= 2)

Uses: Rcpp

Released over 3 years ago.

4 previous versions



  (0 votes)


  (0 votes)

Log in to vote.


No one has written a review of ClustMMDD yet. Want to be the first? Write one now.

Related packages:(20 best matches, based on common tags.)

Search for ClustMMDD on google, google scholar, r-help, r-devel.

Visit ClustMMDD on R Graphical Manual.