DDoutlier (0.1.0)

0 users

Distance & Density-Based Outlier Detection.


Outlier detection in multidimensional domains. Implementation of notable distance and density-based outlier algorithms. Allows users to identify local outliers by comparing observations to their nearest neighbors, reverse nearest neighbors, shared neighbors or natural neighbors. For distance-based approaches, see Knorr, M., & Ng, R. T. (1997) , Angiulli, F., & Pizzuti, C. (2002) , Hautamaki, V., & Ismo, K. (2004) and Zhang, K., Hutter, M. & Jin, H. (2009) . For density-based approaches, see Tang, J., Chen, Z., Fu, A. W. C., & Cheung, D. W. (2002) , Jin, W., Tung, A. K. H., Han, J., & Wang, W. (2006) , Schubert, E., Zimek, A. & Kriegel, H-P. (2014) , Latecki, L., Lazarevic, A. & Prokrajac, D. (2007) , Papadimitriou, S., Gibbons, P. B., & Faloutsos, C. (2003) , Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000) , Kriegel, H.-P., Krger, P., Schubert, E., & Zimek, A. (2009) , Zhu, Q., Feng, Ji. & Huang, J. (2016) , Huang, J., Zhu, Q., Yang, L. & Feng, J. (2015) , Tang, B. & Haibo, He. (2017) and Gao, J., Hu, W., Zhang, X. & Wu, Ou. (2011) .

Maintainer: Jacob H. Madsen
Author(s): Jacob H. Madsen <jacob.madsen1@mail.com>

License: MIT + file LICENSE

Uses: dbscan, pracma, proxy

Released over 1 year ago.



  (0 votes)


  (0 votes)

Log in to vote.


No one has written a review of DDoutlier yet. Want to be the first? Write one now.

Related packages:(20 best matches, based on common tags.)

Search for DDoutlier on google, google scholar, r-help, r-devel.

Visit DDoutlier on R Graphical Manual.