cvplogistic (3.1-0)

0 users

Penalized Logistic Regression Model using Majorization Minimization by Coordinate Descent (MMCD) Algorithm.

http://www.r-project.org
http://cran.r-project.org/web/packages/cvplogistic

The package uses majorization minimization by coordinate descent (MMCD) algorithm to compute the solution surface for concave penalized logistic regression model. The SCAD and MCP (default) are two concave penalties considered in this implementation. For the MCP penalty, the package also provides the local linear approximation by coordinate descant (LLA-CD) and adaptive rescaling algorithms for computing the solutions. The package also provides a Lasso-concave hybrid penalty for fast variable selection. The hybrid penalty applies the concave penalty only to the variables selected by the Lasso. For all the implemented methods, the solution surface is computed along kappa, which is a more smooth fit for the logistic model. Tuning parameter selection method by k-fold cross-validated area under ROC curve (CV-AUC) is implemented as well.

Maintainer: Dingfeng Jiang
Author(s): Dingfeng Jiang <dingfengjiang@gmail.com>

License: GPL (>= 2)

Uses: Does not use any package

Released almost 6 years ago.


3 previous versions

Ratings

Overall:

  (0 votes)

Documentation:

  (0 votes)

Log in to vote.

Reviews

No one has written a review of cvplogistic yet. Want to be the first? Write one now.


Related packages:(20 best matches, based on common tags.)


Search for cvplogistic on google, google scholar, r-help, r-devel.

Visit cvplogistic on R Graphical Manual.