eigenmodel (1.10)

Semiparametric Factor and Regression Models for Symmetric Relational Data.


Estimation of the parameters in a model for symmetric relational data (e.g., the above-diagonal part of a square matrix), using a model-based eigenvalue decomposition and regression. Missing data is accommodated, and a posterior mean for missing data is calculated under the assumption that the data are missing at random. The marginal distribution of the relational data can be arbitrary, and is fit with an ordered probit specification. See Hoff (2007) for details on the model.

Maintainer: Peter Hoff
Author(s): Peter Hoff

License: GPL-2

Uses: Does not use any package
Reverse suggests: sand

Released over 1 year ago.