ktaucenters (0.1.0)

0 users

Robust Clustering Procedures.


A clustering algorithm similar to K-Means is implemented, it has two main advantages, namely (a) The estimator is resistant to outliers, that means that results of estimator are still correct when there are atypical values in the sample and (b) The estimator is efficient, roughly speaking, if there are no outliers in the sample, results will be similar than those obtained by a classic algorithm (K-Means). Clustering procedure is carried out by minimizing the overall robust scale so-called tau scale. (see Gonzalez, Yohai and Zamar (2019) ).

Maintainer: Juan Domingo Gonzalez
Author(s): Juan Domingo Gonzalez [cre, aut], Victor J. Yohai [aut], Ruben H. Zamar [aut]

License: GPL (>= 2)

Uses: dbscan, dplyr, GSE, MASS, tclust, jpeg, knitr

Released 6 months ago.



  (0 votes)


  (0 votes)

Log in to vote.


No one has written a review of ktaucenters yet. Want to be the first? Write one now.

Related packages:(20 best matches, based on common tags.)

Search for ktaucenters on google, google scholar, r-help, r-devel.

Visit ktaucenters on R Graphical Manual.