pmclust (0.2-0)

Parallel Model-Based Clustering using Expectation-Gathering-Maximization Algorithm for Finite Mixture Gaussian Model.

Aims to utilize model-based clustering (unsupervised) for high dimensional and ultra large data, especially in a distributed manner. The code employs 'pbdMPI' to perform a expectation-gathering-maximization algorithm for finite mixture Gaussian models. The unstructured dispersion matrices are assumed in the Gaussian models. The implementation is default in the single program multiple data programming model. The code can be executed through 'pbdMPI' and MPI' implementations such as 'OpenMPI' and 'MPICH'. See the High Performance Statistical Computing website for more information, documents and examples.

Maintainer: Wei-Chen Chen
Author(s): Wei-Chen Chen [aut, cre], George Ostrouchov [aut]

License: GPL (>= 2)

Uses: MASS, pbdBASE, pbdDMAT, pbdMPI
Enhances: MixSim
Reverse enhances: pbdDEMO

Released almost 2 years ago.