softImpute (1.4)

0 users

Matrix Completion via Iterative Soft-Thresholded SVD.

Iterative methods for matrix completion that use nuclear-norm regularization. There are two main approaches.The one approach uses iterative soft-thresholded svds to impute the missing values. The second approach uses alternating least squares. Both have an "EM" flavor, in that at each iteration the matrix is completed with the current estimate. For large matrices there is a special sparse-matrix class named "Incomplete" that efficiently handles all computations. The package includes procedures for centering and scaling rows, columns or both, and for computing low-rank SVDs on large sparse centered matrices (i.e. principal components)

Maintainer: Trevor Hastie
Author(s): Trevor Hastie <> and Rahul Mazumder <>

License: GPL-2

Uses: Does not use any package
Reverse depends: ECLRMC

Released about 5 years ago.

1 previous version



  (0 votes)


  (0 votes)

Log in to vote.


No one has written a review of softImpute yet. Want to be the first? Write one now.

Related packages: Amelia, CVThresh, HardyWeinberg, Hmisc, ade4, cat, eigenmodel, experiment, ltm, memisc, mice, mitools, mix, norm, pan, randomForest, sbgcop, yaImpute, zoo, SNPassoc(20 best matches, based on common tags.)

Search for softImpute on google, google scholar, r-help, r-devel.

Visit softImpute on R Graphical Manual.