spectralGraphTopology (0.1.1)

0 users

Learning Graphs from Data via Spectral Constraints.


Block coordinate descent estimators to learn k-component, bipartite, and k-component bipartite graphs from data by imposing spectral constraints on the eigenvalues and eigenvectors of the Laplacian and adjacency matrices. Those estimators leverages spectral properties of the graphical models as a prior information, which turn out to play key roles in unsupervised machine learning tasks such as clustering and community detection. This package is based on the paper "A Unified Framework for Structured Graph Learning via Spectral Constraints" by S. Kumar et al (2019) .

Maintainer: Ze Vinicius
Author(s): Ze Vinicius [cre, aut], Daniel P. Palomar [aut]

License: GPL-3

Uses: MASS, Matrix, osqp, progress, Rcpp, rlist, R.rsp, clusterSim, igraph, kernlab, matrixcalc, quadprog, testthat, corrplot, knitr, rmarkdown, viridis, bookdown, prettydoc, pals, CVXR, patrick

Released about 1 month ago.

1 previous version



  (0 votes)


  (0 votes)

Log in to vote.


No one has written a review of spectralGraphTopology yet. Want to be the first? Write one now.

Related packages:(20 best matches, based on common tags.)

Search for spectralGraphTopology on google, google scholar, r-help, r-devel.

Visit spectralGraphTopology on R Graphical Manual.