symbolicDA (0.6-2)

0 users

Analysis of Symbolic Data.

Symbolic data analysis methods: importing/exporting data from ASSO XML Files, distance calculation for symbolic data (Ichino-Yaguchi, de Carvalho measure), zoom star plot, 3d interval plot, multidimensional scaling for symbolic interval data, dynamic clustering based on distance matrix, HINoV method for symbolic data, Ichino's feature selection method, principal component analysis for symbolic interval data, decision trees for symbolic data based on optimal split with bagging, boosting and random forest approach (+visualization), kernel discriminant analysis for symbolic data, Kohonen's self-organizing maps for symbolic data, replication and profiling, artificial symbolic data generation. (Milligan, G.W., Cooper, M.C. (1985) , Breiman, L. (1996), , Hubert, L., Arabie, P. (1985), , Ichino, M., & Yaguchi, H. (1994), , Rand, W.M. (1971) , Calinski, T., Harabasz, J. (1974) , Breckenridge, J.N. (2000) , Groenen, P.J.F, Winsberg, S., Rodriguez, O., Diday, E. (2006) , Walesiak, M., Dudek, A. (2008) , Dudek, A. (2007), ).

Maintainer: Andrzej Dudek
Author(s): Andrzej Dudek, Marcin Pelka <>, Justyna Wilk<> (to 2017-09-20), Marek Walesiak <> (from 2018-02-01)

License: GPL (>= 2)

Uses: ade4, cluster, clusterSim, e1071, rgl, RSDA, shapes, XML
Reverse depends: mdsOpt

Released 11 days ago.

5 previous versions



  (0 votes)


  (0 votes)

Log in to vote.


No one has written a review of symbolicDA yet. Want to be the first? Write one now.

Related packages:(20 best matches, based on common tags.)

Search for symbolicDA on google, google scholar, r-help, r-devel.

Visit symbolicDA on R Graphical Manual.