wrMisc (1.1.0)

0 users

Analyze Experimental High-Throughput (Omics) Data.

http://cran.r-project.org/web/packages/wrMisc

The efficient treatment and convenient analysis of experimental high-throughput (omics) data gets facilitated through this collection of diverse functions. Several functions address advanced object-conversions, like manipulating lists of lists or lists of arrays, reorganizing lists to arrays or into separate vectors, merging of multiple entries, etc. Another set of functions provides speed-optimized calculation of standard deviation (sd), coefficient of variance (CV) or standard error of the mean (SEM) for data in matrixes or means per line with respect to additional grouping (eg n groups of replicates). Other functions facilitate dealing with non-redundant information, by indexing unique, adding counters to redundant or eliminating lines with respect redundancy in a given reference-column, etc. Help is provided to identify very closely matching numeric values to generate (partial) distance matrixes for very big data in a memory efficient manner or to reduce the complexity of large data-sets by combining very close values. Many times large experimental datasets need some additional filtering, adequate functions are provided. Batch reading (or writing) of sets of files and combining data to arrays is supported, too. Convenient data normalization is supported in various different modes, parameter estimation via permutations or boot-strap as well as flexible testing of multiple pair-wise combinations using the framework of 'limma' is provided, too.

Maintainer: Wolfgang Raffelsberger
Author(s): Wolfgang Raffelsberger [aut, cre]

License: GPL-3

Uses: MASS, RColorBrewer, RODBC, VGAM, boot, coin, fdrtool, flexclust, som, mixdist, xlsx, BBmisc, NbClust, stringi, data.tree

Released about 1 month ago.


1 previous version

Ratings

Overall:

  (0 votes)

Documentation:

  (0 votes)

Log in to vote.

Reviews

No one has written a review of wrMisc yet. Want to be the first? Write one now.


Related packages:(20 best matches, based on common tags.)


Search for wrMisc on google, google scholar, r-help, r-devel.

Visit wrMisc on R Graphical Manual.